Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 9, 2025
-
Free, publicly-accessible full text available December 8, 2025
-
Simulation-free methods for training continuous-time generative models construct probability paths that go between noise distributions and individual data samples. Recent works, such as Flow Matching, derived paths that are optimal for each data sample. However, these algorithms rely on independent data and noise samples, and do not exploit underlying structure in the data distribution for constructing probability paths. We propose Multisample Flow Matching, a more general framework that uses non-trivial couplings between data and noise samples while satisfying the correct marginal constraints. At very small overhead costs, this generalization allows us to (i) reduce gradient variance during training, (ii) obtain straighter flows for the learned vector field, which allows us to generate high-quality samples using fewer function evaluations, and (iii) obtain transport maps with lower cost in high dimensions, which has applications beyond generative modeling. Importantly, we do so in a completely simulation-free manner with a simple minimization objective. We show that our proposed methods improve sample consistency on downsampled ImageNet data sets, and lead to better low-cost sample generation.more » « less
-
null (Ed.)QNSTOP consists of serial and parallel (OpenMP) Fortran 2003 codes for the quasi-Newton stochastic optimization method of Castle and Trosset for stochastic search problems. A complete description of QNSTOP for both local search with stochastic objective and global search with “noisy” deterministic objective is given here, to the best of our knowledge, for the first time. For stochastic search problems, some convergence theory exists for particular algorithmic choices and parameter values. Both the parallel driver subroutine, which offers several parallel decomposition strategies, and the serial driver subroutine can be used for local stochastic search or global deterministic search, based on an input switch. Some performance data for computational systems biology problems is given.more » « less
An official website of the United States government

Full Text Available